Langchain, OpenAI SDK, LlamaIndex, Instructor, Curl examples
LiteLLM Proxy is OpenAI-Compatible, and supports:
- /chat/completions
- /embeddings
- /completions
- /image/generations
- /moderations
- /audio/transcriptions
- /audio/speech
- Assistants API endpoints
- Batches API endpoints
- Fine-Tuning API endpoints
LiteLLM Proxy is Azure OpenAI-compatible:
- /chat/completions
- /completions
- /embeddings
LiteLLM Proxy is Anthropic-compatible:
- /messages
LiteLLM Proxy is Vertex AI compatible:
This doc covers:
- /chat/completion
- /embedding
These are selected examples. LiteLLM Proxy is OpenAI-Compatible, it works with any project that calls OpenAI. Just change the base_url
, api_key
and model
.
To pass provider-specific args, go here
To drop unsupported params (E.g. frequency_penalty for bedrock with librechat), go here
Input, Output, Exceptions are mapped to the OpenAI format for all supported models
How to send requests to the proxy, pass metadata, allow users to pass in their OpenAI API key
/chat/completions
​
Request Format​
- OpenAI Python v1.0.0+
- AzureOpenAI Python
- LlamaIndex
- Curl Request
- Langchain
- Langchain JS
- OpenAI JS
- Anthropic Python SDK
- Mistral Python SDK
- Instructor
Set extra_body={"metadata": { }}
to metadata
you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={ # pass in any provider-specific param, if not supported by openai, https://docs.litellm.ai/docs/completion/input#provider-specific-params
"metadata": { # 👈 use for logging additional params (e.g. to langfuse)
"generation_name": "ishaan-generation-openai-client",
"generation_id": "openai-client-gen-id22",
"trace_id": "openai-client-trace-id22",
"trace_user_id": "openai-client-user-id2"
}
}
)
print(response)
Set extra_body={"metadata": { }}
to metadata
you want to pass
import openai
client = openai.AzureOpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={ # pass in any provider-specific param, if not supported by openai, https://docs.litellm.ai/docs/completion/input#provider-specific-params
"metadata": { # 👈 use for logging additional params (e.g. to langfuse)
"generation_name": "ishaan-generation-openai-client",
"generation_id": "openai-client-gen-id22",
"trace_id": "openai-client-trace-id22",
"trace_user_id": "openai-client-user-id2"
}
}
)
print(response)
import os, dotenv
from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
llm = AzureOpenAI(
engine="azure-gpt-3.5", # model_name on litellm proxy
temperature=0.0,
azure_endpoint="http://0.0.0.0:4000", # litellm proxy endpoint
api_key="sk-1234", # litellm proxy API Key
api_version="2023-07-01-preview",
)
embed_model = AzureOpenAIEmbedding(
deployment_name="azure-embedding-model",
azure_endpoint="http://0.0.0.0:4000",
api_key="sk-1234",
api_version="2023-07-01-preview",
)
documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"generation_name": "ishaan-test-generation",
"generation_id": "gen-id22",
"trace_id": "trace-id22",
"trace_user_id": "user-id2"
}
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "anything"
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"generation_name": "ishaan-generation-langchain-client",
"generation_id": "langchain-client-gen-id22",
"trace_id": "langchain-client-trace-id22",
"trace_user_id": "langchain-client-user-id2"
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
import { ChatOpenAI } from "@langchain/openai";
const model = new ChatOpenAI({
modelName: "gpt-4",
openAIApiKey: "sk-1234",
modelKwargs: {"metadata": "hello world"} // 👈 PASS Additional params here
}, {
basePath: "http://0.0.0.0:4000",
});
const message = await model.invoke("Hi there!");
console.log(message);
const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234", // This is the default and can be omitted
baseURL: "http://0.0.0.0:4000"
});
async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'gpt-3.5-turbo',
}, {"metadata": {
"generation_name": "ishaan-generation-openaijs-client",
"generation_id": "openaijs-client-gen-id22",
"trace_id": "openaijs-client-trace-id22",
"trace_user_id": "openaijs-client-user-id2"
}});
}
main();
import os
from anthropic import Anthropic
client = Anthropic(
base_url="http://localhost:4000", # proxy endpoint
api_key="sk-s4xN1IiLTCytwtZFJaYQrA", # litellm proxy virtual key
)
message = client.messages.create(
max_tokens=1024,
messages=[
{
"role": "user",
"content": "Hello, Claude",
}
],
model="claude-3-opus-20240229",
)
print(message.content)
import os
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
client = MistralClient(api_key="sk-1234", endpoint="http://0.0.0.0:4000")
chat_response = client.chat(
model="mistral-small-latest",
messages=[
{"role": "user", "content": "this is a test request, write a short poem"}
],
)
print(chat_response.choices[0].message.content)
from openai import OpenAI
import instructor
from pydantic import BaseModel
my_proxy_api_key = "" # e.g. sk-1234 - LITELLM KEY
my_proxy_base_url = "" # e.g. http://0.0.0.0:4000 - LITELLM PROXY BASE URL
# This enables response_model keyword
# from client.chat.completions.create
## WORKS ACROSS OPENAI/ANTHROPIC/VERTEXAI/ETC. - all LITELLM SUPPORTED MODELS!
client = instructor.from_openai(OpenAI(api_key=my_proxy_api_key, base_url=my_proxy_base_url))
class UserDetail(BaseModel):
name: str
age: int
user = client.chat.completions.create(
model="gemini-pro-flash",
response_model=UserDetail,
messages=[
{"role": "user", "content": "Extract Jason is 25 years old"},
]
)
assert isinstance(user, UserDetail)
assert user.name == "Jason"
assert user.age == 25
Response Format​
{
"id": "chatcmpl-8c5qbGTILZa1S4CK3b31yj5N40hFN",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "As an AI language model, I do not have a physical form or personal preferences. However, I am programmed to assist with various topics and provide information on a wide range of subjects. Is there something specific you would like assistance with?",
"role": "assistant"
}
}
],
"created": 1704089632,
"model": "gpt-35-turbo",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"completion_tokens": 47,
"prompt_tokens": 12,
"total_tokens": 59
},
"_response_ms": 1753.426
}
Function Calling​
Here's some examples of doing function calling with the proxy.
You can use the proxy for function calling with any openai-compatible project.
- curl
- SDK
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPTIONAL_YOUR_PROXY_KEY" \
-d '{
"model": "gpt-4-turbo",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Boston today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # [OPTIONAL] set if you set one on proxy, else set ""
base_url="http://0.0.0.0:4000",
)
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
completion = client.chat.completions.create(
model="gpt-4o", # use 'model_name' from config.yaml
messages=messages,
tools=tools,
tool_choice="auto"
)
print(completion)
/embeddings
​
Request Format​
Input, Output and Exceptions are mapped to the OpenAI format for all supported models
- OpenAI Python v1.0.0+
- Curl Request
- Langchain Embeddings
import openai
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.embeddings.create(
input=["hello from litellm"],
model="text-embedding-ada-002"
)
print(response)
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
"input": ["write a litellm poem"]
}'
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"TITAN EMBEDDINGS")
print(query_result[:5])
Response Format​
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
....
-0.0028842222,
],
"index": 0
}
],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 8,
"total_tokens": 8
}
}
/moderations
​
Request Format​
Input, Output and Exceptions are mapped to the OpenAI format for all supported models
- OpenAI Python v1.0.0+
- Curl Request
import openai
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable"
)
print(response)
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
Response Format​
{
"id": "modr-8sFEN22QCziALOfWTa77TodNLgHwA",
"model": "text-moderation-007",
"results": [
{
"categories": {
"harassment": false,
"harassment/threatening": false,
"hate": false,
"hate/threatening": false,
"self-harm": false,
"self-harm/instructions": false,
"self-harm/intent": false,
"sexual": false,
"sexual/minors": false,
"violence": false,
"violence/graphic": false
},
"category_scores": {
"harassment": 0.000019947197870351374,
"harassment/threatening": 5.5971017900446896e-6,
"hate": 0.000028560316422954202,
"hate/threatening": 2.2631787999216613e-8,
"self-harm": 2.9121162015144364e-7,
"self-harm/instructions": 9.314219084899378e-8,
"self-harm/intent": 8.093739012338119e-8,
"sexual": 0.00004414955765241757,
"sexual/minors": 0.0000156943697220413,
"violence": 0.00022354527027346194,
"violence/graphic": 8.804164281173144e-6
},
"flagged": false
}
]
}
Using with OpenAI compatible projects​
Set base_url
to the LiteLLM Proxy server
- OpenAI v1.0.0+
- LibreChat
- ContinueDev
- Aider
- AutoGen
- guidance
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
Start the LiteLLM proxy​
litellm --model gpt-3.5-turbo
#INFO: Proxy running on http://0.0.0.0:4000
1. Clone the repo​
git clone https://github.com/danny-avila/LibreChat.git
2. Modify Librechat's docker-compose.yml
​
LiteLLM Proxy is running on port 4000
, set 4000
as the proxy below
OPENAI_REVERSE_PROXY=http://host.docker.internal:4000/v1/chat/completions
3. Save fake OpenAI key in Librechat's .env
​
Copy Librechat's .env.example
to .env
and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
OPENAI_API_KEY=sk-1234
4. Run LibreChat:​
docker compose up
Continue-Dev brings ChatGPT to VSCode. See how to install it here.
In the config.py set this as your default model.
default=OpenAI(
api_key="IGNORED",
model="fake-model-name",
context_length=2048, # customize if needed for your model
api_base="http://localhost:4000" # your proxy server url
),
Credits @vividfog for this tutorial.
$ pip install aider
$ aider --openai-api-base http://0.0.0.0:4000 --openai-api-key fake-key
pip install pyautogen
from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
{
"model": "my-fake-model",
"api_base": "http://localhost:4000", #litellm compatible endpoint
"api_type": "open_ai",
"api_key": "NULL", # just a placeholder
}
]
response = oai.Completion.create(config_list=config_list, prompt="Hi")
print(response) # works fine
llm_config={
"config_list": config_list,
}
assistant = AssistantAgent("assistant", llm_config=llm_config)
user_proxy = UserProxyAgent("user_proxy")
user_proxy.initiate_chat(assistant, message="Plot a chart of META and TESLA stock price change YTD.", config_list=config_list)
Credits @victordibia for this tutorial.
NOTE: Guidance sends additional params like stop_sequences
which can cause some models to fail if they don't support it.
Fix: Start your proxy using the --drop_params
flag
litellm --model ollama/codellama --temperature 0.3 --max_tokens 2048 --drop_params
import guidance
# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:4000", api_key="anything")
experts = guidance('''
{{#system~}}
You are a helpful and terse assistant.
{{~/system}}
{{#user~}}
I want a response to the following question:
{{query}}
Name 3 world-class experts (past or present) who would be great at answering this?
Don't answer the question yet.
{{~/user}}
{{#assistant~}}
{{gen 'expert_names' temperature=0 max_tokens=300}}
{{~/assistant}}
''', llm=gpt4)
result = experts(query='How can I be more productive?')
print(result)
Using with Vertex, Boto3, Anthropic SDK (Native format)​
👉 Here's how to use litellm proxy with Vertex, boto3, Anthropic SDK - in the native format
Advanced​
(BETA) Batch Completions - pass multiple models​
Use this when you want to send 1 request to N Models
Expected Request Format​
Pass model as a string of comma separated value of models. Example "model"="llama3,gpt-3.5-turbo"
This same request will be sent to the following model groups on the litellm proxy config.yaml
model_name="llama3"
model_name="gpt-3.5-turbo"
- OpenAI Python SDK
- Curl
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
response = client.chat.completions.create(
model="gpt-3.5-turbo,llama3",
messages=[
{"role": "user", "content": "this is a test request, write a short poem"}
],
)
print(response)
Expected Response Format​
Get a list of responses when model
is passed as a list
[
ChatCompletion(
id='chatcmpl-9NoYhS2G0fswot0b6QpoQgmRQMaIf',
choices=[
Choice(
finish_reason='stop',
index=0,
logprobs=None,
message=ChatCompletionMessage(
content='In the depths of my soul, a spark ignites\nA light that shines so pure and bright\nIt dances and leaps, refusing to die\nA flame of hope that reaches the sky\n\nIt warms my heart and fills me with bliss\nA reminder that in darkness, there is light to kiss\nSo I hold onto this fire, this guiding light\nAnd let it lead me through the darkest night.',
role='assistant',
function_call=None,
tool_calls=None
)
)
],
created=1715462919,
model='gpt-3.5-turbo-0125',
object='chat.completion',
system_fingerprint=None,
usage=CompletionUsage(
completion_tokens=83,
prompt_tokens=17,
total_tokens=100
)
),
ChatCompletion(
id='chatcmpl-4ac3e982-da4e-486d-bddb-ed1d5cb9c03c',
choices=[
Choice(
finish_reason='stop',
index=0,
logprobs=None,
message=ChatCompletionMessage(
content="A test request, and I'm delighted!\nHere's a short poem, just for you:\n\nMoonbeams dance upon the sea,\nA path of light, for you to see.\nThe stars up high, a twinkling show,\nA night of wonder, for all to know.\n\nThe world is quiet, save the night,\nA peaceful hush, a gentle light.\nThe world is full, of beauty rare,\nA treasure trove, beyond compare.\n\nI hope you enjoyed this little test,\nA poem born, of whimsy and jest.\nLet me know, if there's anything else!",
role='assistant',
function_call=None,
tool_calls=None
)
)
],
created=1715462919,
model='groq/llama3-8b-8192',
object='chat.completion',
system_fingerprint='fp_a2c8d063cb',
usage=CompletionUsage(
completion_tokens=120,
prompt_tokens=20,
total_tokens=140
)
)
]
curl --location 'http://localhost:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "llama3,gpt-3.5-turbo",
"max_tokens": 10,
"user": "litellm2",
"messages": [
{
"role": "user",
"content": "is litellm getting better"
}
]
}'
Expected Response Format​
Get a list of responses when model
is passed as a list
[
{
"id": "chatcmpl-3dbd5dd8-7c82-4ca3-bf1f-7c26f497cf2b",
"choices": [
{
"finish_reason": "length",
"index": 0,
"message": {
"content": "The Elder Scrolls IV: Oblivion!\n\nReleased",
"role": "assistant"
}
}
],
"created": 1715459876,
"model": "groq/llama3-8b-8192",
"object": "chat.completion",
"system_fingerprint": "fp_179b0f92c9",
"usage": {
"completion_tokens": 10,
"prompt_tokens": 12,
"total_tokens": 22
}
},
{
"id": "chatcmpl-9NnldUfFLmVquFHSX4yAtjCw8PGei",
"choices": [
{
"finish_reason": "length",
"index": 0,
"message": {
"content": "TES4 could refer to The Elder Scrolls IV:",
"role": "assistant"
}
}
],
"created": 1715459877,
"model": "gpt-3.5-turbo-0125",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"completion_tokens": 10,
"prompt_tokens": 9,
"total_tokens": 19
}
}
]
Pass User LLM API Keys, Fallbacks​
Allow your end-users to pass their model list, api base, OpenAI API key (any LiteLLM supported provider) to make requests
Note This is not related to virtual keys. This is for when you want to pass in your users actual LLM API keys.
You can pass a litellm.RouterConfig as user_config
, See all supported params here https://github.com/BerriAI/litellm/blob/main/litellm/types/router.py
- OpenAI Python
- OpenAI JS
Step 1: Define user model list & config​
import os
user_config = {
'model_list': [
{
'model_name': 'user-azure-instance',
'litellm_params': {
'model': 'azure/chatgpt-v-2',
'api_key': os.getenv('AZURE_API_KEY'),
'api_version': os.getenv('AZURE_API_VERSION'),
'api_base': os.getenv('AZURE_API_BASE'),
'timeout': 10,
},
'tpm': 240000,
'rpm': 1800,
},
{
'model_name': 'user-openai-instance',
'litellm_params': {
'model': 'gpt-3.5-turbo',
'api_key': os.getenv('OPENAI_API_KEY'),
'timeout': 10,
},
'tpm': 240000,
'rpm': 1800,
},
],
'num_retries': 2,
'allowed_fails': 3,
'fallbacks': [
{
'user-azure-instance': ['user-openai-instance']
}
]
}
Step 2: Send user_config in extra_body
​
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
# send request to `user-azure-instance`
response = client.chat.completions.create(model="user-azure-instance", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"user_config": user_config
}
) # 👈 User config
print(response)
Step 1: Define user model list & config​
const os = require('os');
const userConfig = {
model_list: [
{
model_name: 'user-azure-instance',
litellm_params: {
model: 'azure/chatgpt-v-2',
api_key: process.env.AZURE_API_KEY,
api_version: process.env.AZURE_API_VERSION,
api_base: process.env.AZURE_API_BASE,
timeout: 10,
},
tpm: 240000,
rpm: 1800,
},
{
model_name: 'user-openai-instance',
litellm_params: {
model: 'gpt-3.5-turbo',
api_key: process.env.OPENAI_API_KEY,
timeout: 10,
},
tpm: 240000,
rpm: 1800,
},
],
num_retries: 2,
allowed_fails: 3,
fallbacks: [
{
'user-azure-instance': ['user-openai-instance']
}
]
};
Step 2: Send user_config
as a param to openai.chat.completions.create
​
const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:4000"
});
async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'gpt-3.5-turbo',
user_config: userConfig // # 👈 User config
});
}
main();
Pass User LLM API Keys / API Base​
Allows your users to pass in their OpenAI API key/API base (any LiteLLM supported provider) to make requests
Here's how to do it:
1. Enable configurable clientside auth credentials for a provider​
model_list:
- model_name: "fireworks_ai/*"
litellm_params:
model: "fireworks_ai/*"
configurable_clientside_auth_params: ["api_base"]
# OR
configurable_clientside_auth_params: [{"api_base": "^https://litellm.*direct\.fireworks\.ai/v1$"}] # 👈 regex
Specify any/all auth params you want the user to be able to configure:
- api_base (✅ regex supported)
- api_key
- base_url
(check provider docs for provider-specific auth params - e.g. vertex_project
)
2. Test it!​
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={"api_key": "my-bad-key", "api_base": "https://litellm-dev.direct.fireworks.ai/v1"}) # 👈 clientside credentials
print(response)
More examples:
- Azure Credentials
- OpenAI JS
Pass in the litellm_params (E.g. api_key, api_base, etc.) via the extra_body
parameter in the OpenAI client.
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"api_key": "my-azure-key",
"api_base": "my-azure-base",
"api_version": "my-azure-version"
}) # 👈 User Key
print(response)
For JS, the OpenAI client accepts passing params in the create(..)
body as normal.
const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:4000"
});
async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'gpt-3.5-turbo',
api_key: "my-bad-key" // 👈 User Key
});
}
main();